31 research outputs found

    Gigwa—Genotype investigator for genome-wide analyses

    Get PDF
    Background Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Description Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. Conclusions The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers. (Résumé d'auteur

    WIDDE: a Web-Interfaced next generation database for genetic diversity exploration, with a first application in cattle

    Get PDF
    Background The advent and democratization of next generation sequencing and genotyping technologies lead to a huge amount of data for the characterization of population genetic diversity in model and non model-species. However, efficient storage, management, cross-analyzing and exploration of such dense genotyping datasets remain challenging. This is particularly true for the bovine species where many SNP datasets have been generated in various cattle populations with different genotyping tools. Description We developed WIDDE, a Web-Interfaced Next Generation Database that stands as a generic tool applicable to a wide range of species and marker types (http://widde.toulouse.inra.fr). As a first illustration, we hereby describe its first version dedicated to cattle biodiversity, which includes a large and evolving cattle genotyping dataset for over 750,000 SNPs available on 129 (89 public) different cattle populations representative of the world-wide bovine genetic diversity and on 7 outgroup bovid species. This version proposes an optional marker and individual filtering step, an export of genotyping data in different popular formats, and an exploration of genetic diversity through a principal component analysis. Users can also explore their own genotyping data together with data from WIDDE, assign their samples to WIDDE populations based on distance assignment method and supervised clustering, and estimate their ancestry composition relative to the populations represented in the database. Conclusion The cattle version of WIDDE represents to our knowledge the first database dedicated to cattle biodiversity and SNP genotyping data that will be very useful for researchers interested in this field. As a generic tool applicable to a wide range of marker types, WIDDE is overall intended to the genetic diversity exploration of any species and will be extended to other species shortly. The structure makes it easy to include additional output formats and new tools dedicated to genetic diversity exploration. (Résumé d'auteur

    Benchmarking database systems for Genomic Selection implementation

    Get PDF
    Motivation: With high-throughput genotyping systems now available, it has become feasible to fully integrate genotyping information into breeding programs. To make use of this information effectively requires DNA extraction facilities and marker production facilities that can efficiently deploy the desired set of markers across samples with a rapid turnaround time that allows for selection before crosses needed to be made. In reality, breeders often have a short window of time to make decisions by the time they are able to collect all their phenotyping data and receive corresponding genotyping data. This presents a challenge to organize information and utilize it in downstream analyses to support decisions made by breeders. In order to implement genomic selection routinely as part of breeding programs, one would need an efficient genotyping data storage system. We selected and benchmarked six popular open-source data storage systems, including relational database management and columnar storage systems. Results: We found that data extract times are greatly influenced by the orientation in which genotype data is stored in a system. HDF5 consistently performed best, in part because it can more efficiently work with both orientations of the allele matrix
    corecore